Centrale M1 2019

Calculatrices autorisées

Réduction de sous-algébres de L(F)

Dans tout le probléme, K désigne R ou C et E est un K-espace vectoriel de dimension n > 1.

On note L(E) le K-espace vectoriel des endomorphismes de E et M,,(K) le K-espace vectoriel des matrices carrées a n lignes
et n colonnes et a coefficients dans K.

On note Matg(u) la matrice, dans la base B de E, de ’endomorphisme v de L(E).
La matrice transposée de toute matrice M de M,,(R) est notée M™.

On dit qu’un sous-ensemble A de L(F) est une sous-algébre de L(E) si A est un sous-espace vectoriel de L(E), stable pour
la composition, c’est-a-dire que uowv appartient & A quels que soient les éléments u et v de A. (Remarquer qu’on ne demande
pas que Idg appartienne a A).

On dit qu’une sous-algébre A de L(FE) est commutative si pour tous u et v dans A, uov =vou.

Une sous-algébre A de L(FE) est dite diagonalisable (respectivement trigonalisable) s’il existe une base B de E telle que
Matg(u) soit diagonale (respectivement triangulaire supérieure) pour tout w de A.

On dit qu’une partie A de M,,(K) est une sous-algébre de M, (K) si A est un sous-espace vectoriel stable pour le produit
matriciel. Elle est dite commutative si, pour toutes matrices A et B de A, AB = BA. Une sous-algébre A de M,,(K) est
diagonalisable (respectivement trigonalisable) s’il existe P € GL,(K) telle que pour toute matrice M de A, P~'MP soit
diagonale (respectivement triangulaire supérieure).

Si B est une base de E, lapplication Matp : L(E) — M, (K) est une bijection qui envoie une sous-algébre (respective-
ment commutative, diagonalisable, trigonalisable) de L(E) sur une sous-algébre de M, (K) (respectivement commutative,
diagonalisable, trigonalisable).

Un sous-espace vectoriel F' de E est strict si F' est différent de E.

On désigne par S, (K) (respectivement A, (K)) ’ensemble des matrices symétriques de M,,(K) (respectivement antisymé-
triques). On désigne par T, (K) (respectivement 7.7 (K)) le sous-ensemble de M, (K) constitué des matrices triangulaires
supérieures (respectivement des matrices triangulaires supérieures a coefficients diagonaux nuls).

I. Exemples de sous-algébres

I.A - Exemples de sous-algébres de M, (K)

1. Les sous-ensembles T}, (K) et T, (K) sont-ils des sous-algebres de M., (K) ?
2. Les sous-ensembles S (K) et A3 (K) sont-ils des sous-algeébres de Mo (K)?
3. On suppose n > 3. Les sous-ensembles S, (K) et A, (K) sont-ils des sous-algébres de M,,(K)?

I.B - Exemples de sous-algébres de L(F)
Soit F' un sous-espace vectoriel de E de dimension p et A I’ensemble des endomorphismes de E qui stabilisent F) ¢’est-a-dire
Arp ={u € L(E)u(F) C F}.

4. Montrer que Ap est une sous-algébre de L(E).

5. Montrer que dim Ap = n? — pn + p°.
On pourra considérer une base de E dans laquelle la matrice de tout élément de Ap est triangulaire par blocs.

. Détermi — %).
6. Déterminer 1511?5217}1(—1(71 pn + p°)

I.C - Exemples de sous-algébres de M,(K) diagonalisables et non diagonalisables

Soit I'(K) le sous-ensemble de M (K) constitué des matrices de la forme (a

=b\ . 2
b a)ou(a,b)eK.

7. Montrer que I'(K) est une sous-algébre de M (K).
8. Montrer que I'(R) n’est pas une sous-algébre diagonalisable de M5 (R).

9. Montrer que (0

1 0 ) est diagonalisable sur C. En déduire que I'(C) est une sous-algébre diagonalisable de M2 (C).



IT. Une sous-algébre commutative de M, (R)

Dans cette partie, on suppose n > 2.

Pour tout (ag,...,a,—1) € R", on pose

ao ap—1 -+ a1
ay ag ... Q9
J(ag,. .. apn—1) =

ap—1 An-2 - QG

Ainsi, le coefficient d’indice(s, j) de J(ao,...,an—1) est a;—; si i > j et a;_ 1y, sit < j.
Soit A I’ensemble des matrices de M,,(R) de la forme J(ag,...,a,-1) ou (ag,...,a,—1) € R™.

Soit J € M,,(R) la matrice canoniquement associée a I’endomorphisme ¢ € L(R") défini par ¢ : e; — €41 sij € {1,...n—1}
et p(e,) =eq, ou (eq,...,e,) est la base canonique de R”.

II.A - Calcul des puissances de J

10. Préciser les matrices J et J2. (on pourra distinguer les cas n = 2 et n > 2).
11. Préciser les matrices J" et J* pour 2 < k <n — 1.
12. Quel est le lien entre la matrice J(ag,...,a,—1) et les JFon0<k<n-—17?

I1.B - Une base de A
13. Montrer que (I,,,J, J%,...,J" ') est une base de A.

14. Soit M € M, (R). Montrer que M commute avec J si et seulement si M commute avec tout élément de A.

15. Montrer que A est une sous-algébre commutative de M, (R).

IT.C - Diagonalisation de J

16. Déterminer le polyndéme caractéristique de J.
17. Montrer que J est diagonalisable dans M, (C).
18. La matrice J est-elle diagonalisable dans M,,(R)?

19. Déterminer les valeurs propres complexes de J est les espaces propres associés.

IL.D - Diagonalisation de A

20. Le sous-ensemble A est-il une sous-algebre de M,,(C)?
21. Montrer qu’il existe P € GL,(C) telle que, pour toute matrice A € A, la matrice P~* AP est diagonale.

n—1
Soit (ag,...,an—1) € R™. On note @ € R[X] le polynome Z ap Xk,
k=0
22. Quelles sont les valeurs propres complexes de la matrice J(ag,...,an—1)7

ITI. Sous-algébres strictes de M, (R) de dimension maximale

On se propose de montrer dans cette partie que la dimension maximale d’une sous-algébre stricte de M, (R) est égale a

n?—n+1.

Dans toute cette partie, A est une sous-algébre de M,,(R) strictement incluse dans M,,(R) et on note d sa dimension. On a
donc d < n?.

ITI.A - Un produit scalaire sur M, (R)

La trace de toute matrice M de M,,(R) est notée tr(M).
23. Montrer que l'application définie sur M,,(R) x M, (R) par (A, B) + (A, B) = tr(A” B) est un produit scalaire sur
M, (R).
On désigne A+ lorthogonal de A dans M,,(R) et on note 7 sa dimension.
24. Quelle relation a-t-on entre d et 77
Jusqu’a la fin de cette partie IIT, on fixe une base (A, ..., A,) de A*.
25. Soit M € M,,(R). Montrer que M appartient & A si et seulement si, pour tout i € [1,r], (A;, M) = 0.
26. Montrer que pour toute matrice N € A et tout i € [1,7], on a NT 4; € AL,



ITI.B - Conclusion
Soit AT = {MT|M € A}.
27. Montrer que A7 est une sous-algébre de M,,(R) de méme dimension que A.

On note M,, 1 (R) le R-espace vectoriel des matrices colonnes a n lignes et a coefficients réels. On rappelle qu’a toute matrice
M de M, (R) est associé canoniquement ’endomorphisme de M,, ;(R) défini par X — M X.

28. Soit X € M, 1(R) et soit F' = Vect (A1 X,...,A,X). Montrer que F est stable par les endomorphismes de M,, 1 (R)
canoniquement associés aux éléments de A7

29. Montrer que d < n? —n + 1 et conclure.

IV. Réduction d’une algébre nilpotente de M, (C)

Soit E un C-espace vectoriel de dimension finie n > 1. Soit A une sous-algébre de L(F) constituée d’endomorphismes
nilpotents. On admet dans cette partie le théoréme ci-dessous, qui sera démontré dans la partie V.

Théoréme de Burnside

Soit E un C-espace vectoriel de dimension n > 2. Soit A une sous-algébre de L(E). Si les seuls sous-espaces vectoriels de F
stables par tous les éléments de A sont {0} et E, alors A = L(E).

On se propose de démontrer par récurrence forte sur n € N* que si tous les éléments de A sont nilpotents, alors A est
trigonalisable.

30. Montrer que le résultat est vrai si n = 1.
On suppose désormais que n > 2 et que le résultat est vrai pour tout entier naturel d < n — 1.

31. Montrer qu'il existe un sous-espace vectoriel V' de E distinct de E et {0} stable par tous les éléments de A.
On fixe dans la suite un tel sous-espace vectoriel et on note r sa dimension. Soit aussi s =n — r.

32. Montrer qu’il existe une base B de E telle que pour tout u € A,

Matgs(u) = <Agu) g%)

ou A(u) € M,(C), B(u) € M, s(C) et D(u) € M(u).
33. Montrer que {A(u)|u € A} est une sous-algébre de M,.(C) constituée de matrices nilpotentes et que {D(u)|u € A} est
une sous-algébre de M, (C) constituée de matrices nilpotentes.

34. Montrer que A est trigonalisable.

35. Montrer qu’il existe une base de E dans laquelle les matrices des éléments de A appartiennent & T, (C).

V. Le théoréme de Burnside

On se propose de démontrer dans cette partie le théoréme de Burnside énoncé dans la partie IV.
On fixe un C-espace vectoriel F de dimension n > 2.

On dira qu’une sous-algebre A de L(FE) est irréductible si les seuls sous-espaces vectoriels stables par tous les éléments de A
sont {0} et E.

Soit A une sous-algebre irréductible de L(E). Il s’agit donc de montrer que A = L(E).

V.A - Recherche d’un élément de rang 1

36. Soient x et y deux éléments de E, x étant non nul. Montrer qu’il existe u € A tel que u(x) = y.
On pourra considérer dans E le sous-espace vectoriel {u(z)|u € A}.

37. Soit v € A de rang supérieur ou égal & 2. Montrer qu’il existe u € A et A € C tel que :
0 <rg(vouowv— ) <rg(v).

Considérer x et y dans E tels que la famille (v(x),v(y)) soit libre, justifier l’existence de u € A tel que uov(z) =y et
considérer l’endomorphisme induit par v o u sur Im (v).

38. En déduire 'existence d’un élément de rang 1 dans A.

V.B - Conclusion

Soit ug € A de rang 1. On peut donc choisir une base B = (e1,...,&,) de E telle que (e2,...,e,) soit une base de ker ug.
39. Montrer qu'il existe uy,...,u, € A de rang 1 tels que u;(e1) = &; pour tout @ € [1,n].
40. Conclure



Centrale M1 2019 - Corrigé

I. Exemples de sous-algébres

I.A - Exemples de sous-algébres de M, (K)

1.

. En prenant A,, = (

T, (K) et TF(K) sont des sous-espaces vectoriels de M,,(K) stables par produit, donc ce sont des sous-algébres de
M, (K).

. S5(K) et A3(K) sont des sous-espaces vectoriels de M (KK).

Cependant, A = (1) 8) € 55(K) et B = ((1) (1)) € 55(K), mais AB = (8 é) ¢ 55(K), donc S3(K) n’est pas stable par
produit, donc S2(K) n’est pas une sous-algébre de Mz (K).

C = _01 (1)) e A3(K) et C? = I, ¢ As(K), donc Ap(K) n’est pas stable par produit, donc A(K) n’est pas une
sous-algebre de M3 (K).

A 02,7-2 3
On-22  Op—2 ) € Sn(K), Bn = (0

AB - O2n2 ¢5,(K) et C? = “f2 D2 ¢ A, (K), donc A, (K) et S,(K) ne sont pas stables par
Op—22 Op-2 Op—22 Op_2

produit, donc S, (K) et A, (K) ne sont pas des sous-algébres de M,,(K).

B 02,12

n-2,2 Op_o

c 02,52

€ Sp(K) et Cp = € A,(K), on a
Op—22 Op-2

Aan =

I.B - Exemples de sous-algébres de L(F)

4.

e Ar c L(E) par définition de Ap.
e I'application nulle Oz(gy € Ap car Og(g)(F) = {0g} c F, donc Ar # @.
e Pour tout (u,v) € (Ap)?, pour tout \ € K, pour tout x € F,

(A+v)(x)=XA wu(zx) + wv(x) €F carF est un sous-espace vectoriel de E,
—— ——
eF car ueAr €F car veAp

donc (Au+v)(F) c F, donc A\u+v e Ap.

e Ap est donc un sous-espace vectoriel de F.

e De plus, pour tout (u,v) € (Ar)?, uov(F) = u(v(F)) c u(F) c F, donc uov € Ap, donc Ap est stable par composition.
e Ar est donc bien une sous-algeébre de L(E).

. Soit By = (eq,...,ep) une base de F' complétée en une base B = (e1,...€p,ps1,...,6,) de E.

Alors u € Ap < Matp(u) est de la forme ( A B) otu Ae M,(K), Be My ,p(K) et C e M, _,(K).

Oppp C
Comme u — Matg(u) est un isomorphisme d’espaces vectoriels, on a

A B

dim Ar = dim {(On—p,p c

)’ Ae Mp(K), BeM,np(K) Ce Mn—p(K)} =p’+p(n-p)+(n-p)*=n’-pn+p’.

2

2
3 1
. Pour tout p € [1,n—1]], n* —np+p* = (p - §n) + ZnQ, donc (n?—pn+p?) est maximum quand (p - En) est maximum,

2
3
donc pour p=1ou p=n-1, et ce maximum vaut (1 - in) + Zn2 =n?-n+1.

I.C - Exemples de sous-algébres de M, (K) diagonalisables et non diagonalisables

o I'(K) = Vect | Io, ((1) _01) , donc T'(K) est un sous-espace vectoriel de M (K).

———
notée C

e De plus, comme C? = —I5, on a, pour tout (als +bC,cly +dC) € I'(K)?,

(aly +bC)(cly +dC) = (ac—bd) Is + (ad + be) C e T(K),
N— N——
eK eK

donc T'(K) est stable par produit.
e I'(K) est donc bien une sous-algébre de My (K).

. On a xyo(X) = X? + 1 n’est pas scindé sur R, donc C n’est pas diagonalisable dans My(R), donc T'(R) n’est pas une

sous-algebre diagonalisable de Mo (R).



9. e Comme Yo (X)=X%+1= (X +14)(X —1i) est scindé a racines simples sur C, C est diagonalisable dans My (C) et il
existe P € GLy(C) et D = diag(i,—i) diagonale telles que C = PDP™",
e Alors, pour tout als + bC' € T'(K),

P~ (aly + bC)P = aPI,P~' + bP 'CP = al, + bdiag(i, i) = diag(a + bi,a — bi),
donc T'(C) est une sous-algebre diagonalisable de My (C).

I1. Une sous-algébre commutative de M, (R)

I1.A - Calcul des puissances de J
10.  On a J = Mat, . ..\ (¢) =J(0,1,0,0,...,0).
L4 J2 = Mat(el,...,en)((p2)'
Or, pour tout i € [[1,n - 2]], @2(ei) = p(€i+1) = €12, <p2(en_1) =p(en) =€ et <p2(en) = p(e1) = ey, donc

I sin=2

Jo = Mate, o (0%(e1),...¢%(en)) = .
2= Mate,, ey (¢™(e1), ¢ (en)) {J(0,0,1,0,...,0) sin>3

11. Soit n > 3.
On vérifie par le calcul que J x J(ag, a1 ...,a,-1) = J(an-1,00,--.,an-2), puis, par récurrence immédiate, on obtient :
J*=7(0,...,0,1,0,...,0) (ar =1 et a; = 0 pour tout i # k) et J™ = I,,.

n-1 n-1
12. On a J(ag,...,an-1) = ». apJ(0,...,0, 1 ,0,...,0)= > apJ"
k=0 el k=0
position k
I1.B - Une base de A

13. o La famille (I,,,.J,J%,...,J" ") est composée d’éléments de A d’aprés la question 11.
e D’aprés la question 12, (I, J,.J?,...,J" ) est génératrice de A.

e De plus, pour tout (ag,...,a,-1) € K", toujours d’aprés la question 13, on a :
n—1
aoly, + Z apJ* =0, < J(ag,...ap-1) =0, < ag=...=ap_1 =0,
k=1
donc la famille (I,,,.J,J?,...,J" ') est libre.
o (In,J, J?,...,J"1) est donc bien une base de A, qui est donc de dimension n.

14. Soit M € M, (R).

e Si M commute avec J, alors, par récurrence immédiate, M commute avec J* pour tout k € N.
n-1

Par suite, pour tout N = ) apJ e A,
k=0

n-1

n-1 n-1 n-1
MN = M(Z aka) =Y apMJ* =Y apJ* M = (Z aka) M =NM,
k=0 k=0 k=0 k=0

donc M commute avec tous les éléments de A.
e Réciproquement, si M commute avec tous les éléments de A, M commute avec J car J € A.
e par double-implication, on a donc bien ’équivalence souhaitée.

15. o A=Vect(I,,J,J?, ...,J" ") est un sous-espace vectoriel de M., (K).

n-1
o Pour tout i € [0,n - 1]), pour tout N = > axJ" € A,

k=0
. [n-1 i n—1 kv n—1-1 et n-1 s
JN=J>Y apJ®)=> apJ"™ = > ap "+ > apJ™
k=0 k=0 k=0 k=n—i
n—-1-1 A n-1
— ClkJ +1 + Z ak J'n Jk‘+1—77
. ——
k=0 k=n—1 _
n-1-i . n-1
= ax Jk+i + Z ay Jhti-n € A comme combinaison linéaire d’éléments de A.
k=0 —— k=n—i —
€A car k+ie[[0,n-1]] eA car k+i—ne[[0,n—1]]

A est donc stable par produit, donc A est une sous-algébre de M, (K).

n—1
e Pour tout N = 3’ apJt e A,
k=0

n-1 n-1 n-1 n-1 n-1
JN = J(z ak,]k) =Y ap T =Y ap I =Y ap T = (Z aka) J=NJ,
k=0 k=0 k=0 k=0 k=0



donc N commute avec J, donc, d’aprés la question précédente, N commute avec tous les éléments de A.
A est donc bien une sous-algébre commutative de M, (K).

II.C - Diagonalisation de J

16. On a
X 0 -« 0 -1
-1 X - : 0
xs(X) =det(XI,-J)=]|0 0
: ~ 0
0 0 -1 X[n]
X 0 - - 0 1 X 0 - 0
-1 X 0 : 0 -1 X :
=X|0 oo + (D" x (<) x| o o w0
oo w0 oo X
0 - 0 -1 X[nq] 0 -« - 0 -1 1]

(dvlpt par rapport & la derniére colonne)
=X x X"+ (-1)"2 x (-1)""!  (déterminant de matrices triangulaires)

= X"+ (1) = X" -1,

17. Par suite, x s est scindé & racines simples dans C (ses racines sont les racines n-éme de 'unité), donc J est diagonalisable

dans M,,(C).

18. Pour n =2, x5 = (X - 1)(X +1) est scindé & racines simples dans R, donc J est diagonalisable dans M5 (R).

Sin >3, x5 n’est pas scindé sur R, donc J n’est pas diagonalisable dans M, (R).

19. D’aprés la question 17, Spc(J) = {e2z‘k7r/n7 ke[[0,n-1]} = {wac e[[0,n-1]]} ot w= 2im/n
Pour tout k € [[0,n —1]],

(n-1)k (n-1)k
w(n—2)k 1 W w(n—Q)k
W™ =1k PG w
J :k = W2k | = | -2k | = )k :k ;
w . : w
: k & :
1 v w 1
w(n—l)k
w(n—2)k
donc wzk est un vecteur propre de J associé a la valeur propre Wk,
1
w(n—l)k
w(n—2)k
Par suite, Vect L c E,.(J), et, comme w” est une valeur propre simple, on a dim E_ (J) = 1 = dim Vect
w
1
donc, comme on a une inclusion et ’égalité des dimensions, on a :
w(n—l)k
w(n—Q)k
E,_«(J) = Vect o
w
1

II.D - Diagonalisation de A

w(n—l)k
w(n—Z)k

20. La preuve faite en question 15 avec K au lieu de R permet de conclure directement ici que A est une sous-algébre

(commutative) de M,,(C).
21. Comme J est diagonalisable dans M., (C), il existe P € GL,(C) et D diagonale telles que P"'JP = D.

On peut méme particulariser P et D a l'aide de la question 19, mais une telle précision ne servira a rien dans la suite

de cette preuve.



22.

n—1
Alors, par récurrence immédiate, on a, pour tout k ¢ N, P~*J¥P = D¥. Puis, pour tout M = Z apJ® e A,
k=0

n-1 n—1 n—1
P'MpP=pP! (Z aka) P=% aP'J*P=3 a,D"
k=0 k=0 k=0
qui est diagonale come combinaison linéaire de matrices diagonales.

A est donc une sous-algeébre diagonalisable de M,,(C).
En choisissant bien la matrice P dans la question précédente, on a D = diag((w")i=o..n-1), donc

n—1 n—-1
P 'J(ao,...,an-1)P =Y. D" = " adiag((w*")izo..n-1)
k=0 k=0

n—1 .
= diag (( > akw’“) ) ,
k=0 i=0..n—1

donc Spc(J(ag,---,an-1)) = {nil apw™, e [0,n - 1]]}
k=0

ITI. Sous-algébres strictes de M, (R) de dimension maximale

ITI.A - Un produit scalaire sur M, (R)

23.

24.

25.

26.

e Pour tout (M,N) € (M, (R))%, (M,N) =tr(MTN) = tr(MTN)T) = tr(NTM) = (N, M), donc (,) est symétrique.
e Pour tout (M, N, P) € (M, (R))?, pour tout A € R,

(AM + N, P) =tr((AM + N)'P) =tr(AMTP + N'P) (linéarité de la transposition)

= Mr(MTP) +tr(NTP) (linéarité de la trace)
=A(M,P)+(N,P),

donc (,) est linéaire a gauche.
e (,) est symétrique et linéaire & gauche, donc bilinéaire.
e Pour tout i € [[1,n]],

(MTM)ii= 3 (M"Y o (M) =Y. mi
k=1 k=1
donc
T < T gL 2 2
(M, M) =tr(M* M) = Z(M M)“ = Z Z my ;= Z m; g
i=1 i=1k=1

Par suite, il est clair que (M, M) >0 (comme somme de positifs) et on a

(M,M)=0< Y mi,=0<V(ik)e[1,n]* mir=0< M=0,.

1<i,k<n

(,) est donc bien défini positif.
e (,) définit donc bien un produit scalaire sur M., (R).

Comme M,,(R) est de dimension finie, (M,,(R),(.,.)) est un espace euclidien, donc dim A + dim A" = dim M,,(R), ie

d+r=n>

Comme (M,,(R),(.,.)) est un espace euclidien, A = (A*)".

e Soit M € A. Alors, pour tout N € A*, (M, N) = 0.

En particulier, pour tout i € [[1,7]], comme A; € A", on a (A;, M) = 0.

¢ Réciproquement, supposons que pour tout i € [1,7]], (A;, M) = 0. Comme (A1,..., A,) est une base de A", pour tout
n

N e A*, il existe (ai,...,a,) € R" tel que N = Z%‘sz

i=1
Alors, par bilinéarité du produit scalaire, on a

<]V7A1>: E:ai(fh7ﬂl):(L
i=1 S———
=0

donc M € (A*)* = A.
e On a donc bien, par double-implication, I’équivalence souhaitée.
Soit Ne Aetie[[1,7].
Pour tout M € A,
(M,NTA;) =tr(MTNTA;) = tr((NM)" 4;) = (NM, A;) =0
d’aprés la question précédente avec NM € A car A est stable par produit.
On a donc bien NT 4; € A*.



IT11.B - Conclusion

27.

28.

29.

IV.

30.

31.

32.

33.

e L’application transposition Trans: M € M, (R) » M”* ¢ M, (R) est un automorphisme de M,,(R) (et Trans ' =
Trans), donc AT = Trans(A) est un sous-espace vectoriel de M,,(R) de méme dimension que A comme image d’un
sous-espace vectoriel par un isomorphisme.

e Pour tout (4, B) € (AT)?, il existe (M, N) € A% tel que A= M7T et B=N7”.

Alors AB=MTNT = (NM)T € AT car A est stable par produit, donc NM € A.

AT est donc stable par produit, donc c’est une sous-algébre de M,, (R).

Pour tout M* e A*, pour tout i € [[1,r]], MT A; e A* d’aprés la question 26, donc, comme (A, ..., A,) est une base
T

de A*, il existe (a1,...,a,) € R" tel que MT A; = Z ar Ay, et, par suite,
k=1

MTAX =Y arArX € Vect (A1 X, ..., A, X).
k=1

Par suite, M7 (F) = Vect (M7 A1 X,...,MT A, X) c F comme espace vectoriel engendré par des éléments de F, donc F
est stable par M7, cqfd.

eSid>n®-n+1,alors 7 =n®—d<n-1.Soit X ¢ Ker A; (possible car 4; # 0 car la famille (4;,...,A,) est libre).
Soit F' = Vect (A1 X,...,A,X). On a:

- dim F <r <n, donc F # M, 1(R)

— dimF > 1, car A; X #0, donc F # {0}.

De plus, en identifiant les matrices et leur application linéaire canoniquement associée, on a

AT c Ap, ou cette notation a été introduite dans la partie LB.
On a donc

d=dim A =dim AT (d’aprés la question 27)

<dimAp =n? —pn+p*> (d’aprés la question 5)

2

< max n®-pn+p?=n®-n+1, cequiest contraire a ’hypothése sur d.

" 1gpsn-1

D’on, par labsurde, d <n? —n + 1.

e Soit E = M, 1(R) et soit X € M,, 1(R) non nul. En posant F' = Vect (X') de dimension 1, Ap = {u € L(E) :u(F)c F}
est une sous-algébre de £(E) de dimension n? - n + 1 d’aprés la question 5.

Soit B une base de E. Alors, d’aprés les remarques préliminaires, {Matg(u),u € Ap} est une sous-algebre de M,,(R)
de méme dimension, donc de dimension n? —n + 1.

Le majorant n? —n + 1 de la dimension d’une sous-algébre stricte de M,,(R) est donc atteint, donc n
dimension maximale d’une sous-algébre stricte de M,,(R).

2_m+1lestla

Réduction d’une algébre nilpotente de M, (C)

Si E est de dimension 1, alors £(E) est de dimension 1° = 1, donc A = {0} ou A = L(E).

Comme Idg n’est pas nilpotente, A # L(E), donc A = {0}, et A est bien trigonalisable.

On peut aussi remarquer que la matrice de nimporte quel endomorphisme de E est une matrice de M;(C), donc
automatiquement triangulaire.

Comme Idg n’est pas nilpotente, Idg ¢ A, donc A # L(E), La contraposée du théoréme de Burnside assure alors
Pexistence d’un sous-espace vectoriel V de E distinct de E et {0} stable par tous les éléments de A.

Soit By = (ey,...,e,;) une base de V complétée en une base (ey,...,e,) de E.
Alors, pour tout u € A, pour tout j € [1,7]], u(e;) € F = Vect(ey,...,e,), donc il existe (a; ;)i tel que u(e;) =

r

Z ai’jej.
i=1

Alors on a

Matg(u) = Matg(u(er),...,uler),u(ers1), ..., ule,)) = (AEJU) ZB;EZ;) 7

ot A(u) = (aij)1<i,j<r € Mr(C), B(u) e M, (C) et D(u) e M, (C).

A B

OSoitM:(O D

) ot Ae M,.(C), BeM, (C) et DeM,(C).

P
Montrons par récurrence que, pour tout p € N, il existe B, € M, ;(C) telle que M? = (/(1) gﬁ) (HR,)
AO

Initialisation : Pour p=0, M° =1, = ( 0

g%) en posant By =0, .

Pour p =1, By = B convient.



34.

35.

Hérédité : Soit p € N et supposons HR,, vérifiée.

Alors . )
AP B A B APt APB+ B, D AP* B
P+l _ Agp _ P _ D _ p+1
e (5 ) B)- (Y ) (N B

en posant By.1 = APB+ B,D. On a bien HRy.1.

. . AP B
Conclusion : D’ou, par récurrence, pour tout p € N, il existe B, € M,. ;(C) telle que M? = ( p) .

0 DP
. . A B

o Soit A e {A(u)|ue A}. Alors il existe u € A tel que Matg(u) = 0o Dl

Alors, d’aprés le premier point, pour tout p € N,

A BY (A* B
Matg(up):(o D) :(0 DI;)'

. oo . AP° B
Or u € A, donc u est nilpotent, donc il existe pg € N tel que u?° =0 et, par suite, 0 = ( 0 DI;’?’) , donc AP° =0, donc
A est nilpotente.

e Pour tout (u,v) € A pour tout A € C,

Matg(Au+v) = AMatg(u) + Matg(v) = ()\A(u) + A(v) *) 7

0 *

donc A(Au+v) = A(u) + A(v).
v:ue A A(u) € M,.(C) est donc une application linéaire, donc {A(u)|u € A} = Im¢ est un sous-espace vectoriel de
M,.(C).

e Pour tout (A, B) € ({A(u)u € A})?, il existe u et v € A tels que A = A(u) et B = A(v), c’est-a-dire Matp(u) = (61 :)

et Matg(v) = (? ¥

*

Alors uowv e A car A est une sous-algébre de L(E) et

Matg(uowv)=Matg(u) x Matg(v) = (AOB i) ,
donc AB = A(uowv) € {A(u)|ue A}.

{A(u)lu € A} est donc stable par produit.

o {A(u)|u € A} est donc bien une sous-algébre de M,.(C) constituée de matrices nilpotentes.

e On montre de méme que {D(u)|u € A} est une sous-algeébre de M (C) constituée de matrices nilpotentes.

e {A(u)lu € A} est une sous-algeébre de M., (C) dont tous les éléments sont nilpotents, donc, comme r < n -1,
{A(u)|u € A} est trigonalisable (version matricielle de ’hypothése de récurrence), ie il existe P € GL,.(C) telle que pour
tout A e {A(u)|ue A}, P"'AP soit triangulaire supérieure.

e De méme, il existe Q € GL,(C) telle que pour tout D € {D(u)lu e A}, P"*DP soit triangulaire supérieure.

e Posons alors R = (]03 g) e M, (C).

Comme det(R) = det(P)det(Q) # 0, R est inversible.

En voyant R comme une matrice de changement de base, et en posant donc C base de E telle que R = Matz(C), on a,

pour tout u € A,

Mate(u) = R Matg(u)R = (P_l 0 )(A(u) B(u)) (P 0)

0 Q 0 D)J\o Q@
(P' 0 \[(A(m)P B)Q
(% @) (9" 5)
_(P‘lA(u)P P—lB(u)Q)
0 Q'D(w)Q

et cette derniére matrice est triangulaire supérieure car P_IA(u)P et Q_lD(u)Q le sont. On peut alors conclure la
propriété annoncée par récurrence...

Dans cette base C, les valeurs propres de u sont les éléments diagonaux de la matrice associée.
Or, comme il existe p tel que u” = 0, si = est un vecteur propre de u associé a la valeur propre A, alors

uP (z) = uPH(u(z)) =P P (\x) = P (z) = ... = Mo,

donc, comme u? =0, on a APz =0, donc, comme x =0, on a AP =0, donc A = 0.

Par suite, les éléments diagonaux de la matrice associée & u dans la base C sont nuls, donc cette matrice triangulaire
est dans 7.7 (C).



V. Le théoréme de Burnside

V.A - Recherche d’un élément de rang 1

Comme A est irréductible, A # {0.(g)}, car tous les sous-espaces vectoriels de E seraient alors stable par tous les éléments

de A.
36.

37.

38.

e Soient x un élément non nul de F.

F ={u(x)|u € A} est un sous-espace vectoriel car A en est un. De plus, pour tout y € F, il existe u € A tel que y = u(x).

Alors, pour tout v e A, v(y) = vou(x) e {f(z)|f € A} = F. F est donc stable par tous les éléments de A, donc F = {0}
——

eA
ou F'=F.

e Si F' = {0}, alors, pour tout u € A, u(x) = 0, donc Vect (x) est stable par tous les éléments de A, ce qui est exclu car
A est une sous-algebre irréductible de L(E) et car Vect (x) # {0} (car x # 0).
e On a donc F = F, et, par suite, pour tout y € E, il existe u € A tel que u(x) = y.

e Soit x et y dans F tels que la famille (v(z),v(y)) soit libre (z et y existent car rg(v) > 2). D’aprés la question
précédente, comme v(x) # 0, il existe u € A tel que y = u(v(x)) = uov(x).

e Considérons alors ¢ : z € Im (v) = v ou(z) € Im (v).

 est un endomorphisme de Im (v), C espace vectoriel de dimension au moins 1, donc ¢ admet au moins une valeur propre
A. (car son polynome caractéristique, de degré au moins 1, admet au moins une racine sur C). Par suite, ¢ — Mdyy, (1)
n’est pas injective, donc non surjective (endomorphisme en dimension finie), donc rg(¢) < dim(Im(v)) - 1 =rg(v) - 1.
e Soit alors ¢ =vouov—ve L(E).

Comme ) = powv, rg(1) < min(rg(y),rg(v)) <rg(v) -1 et, comme () =vououv(x) - Av(z) =v((uov)(x)) - Av(z) =
v(y) = Mw(z) #0 (car (v(x),v(y)) est une famille libre), donc rg(v) > 1.

On a donc bien 0 < rg(vouowv—Av) <rg(v).

Supposons qu’il n’existe pas d’élément de A de rang 1.

Posons alors r = min{rg(u),u € AN{0,(g)}}, qui existe comme minimum d’un ensemble fini non vide (car A # {Oz(g)})-
Soit alors v € E tel que rg(v) = r. Alors, en prenant u comme dans la question précédente, vouowv € A comme composé
d’éléements de A, et vouowv— v e A car A est un sous-espace vectoriel de L(E).

Or 0<rg(vouowv—Av) <rg(v) =r, ce qui est exclu.

D’ou, par 'absurde, il existe v € A tel que rg(v) = 1.

V.B - Conclusion

39.

40.

Comme ug est de rang 1, et ug(ex) = 0 pour tout k € [2,n]], on a ug(e1) # 0.
D’ou, d’apreés la question 36, pour tout i € [2,n]], il existe v; € A tel que v;(up(e1)) = &;. Alors u; = v;ou e A car A est
stable par composition et

ui(€1) =¢g; et Vk e [[Q,n]],ui(ak) = vi(uo(ak)) = ’Ui(O) = O,

donc dimIm (u;) = dim Vect (u;(ex )kef1,n])) = dim Vect (u;(e1)) = 1, donc u; est de rang 1 et u;(e1) = &;.

On construit maintenant des endomorphismes u; ; dans A dont les matrices dans B sont les E; ; de la base canonique
de M,,(C).

On a déja construit u; ;1 = u; dans la question précédente.

— Notons (V4,...,V,) la base canonique de M,, 1(C) et

G:{er : Yue A, VlTMatB(u)MatB(x):O}.

— @ est un sous-espace vectoriel de F.
De plus, si z € G, alors, pour tout v € A, v(x) € G car pour tout u € A,

VI Matg(u)Matg(v(x)) = Vi Mats(u)Mats(v)Matg(z) = V,F Matg (wov) Matg(z) = 0.
N , car x € G
eA

Par suite, comme A est supposée irréductible, on a G = {0} ou G = E.

Supposons G = E. Soit alors ¢ : x € E + Vi Matg(z) € C. ¢ est une forme linéaire non nulle de £(F,C), donc
K =Kerp={xeE: VI Matg(z) = 0} est un sous-espace vectoriel de E de dimension n — 1.

De plus, pour tout x € K, pour tout u € A, u(z) € K car

Vi Matg(u(z)) = Vi Matg(u)Matg(z) =0

carxe E=G.

K est donc un sous-espace vectoriel non tirvial de E stable par A, ce qui est contraire au caractére irréductible de
A.

On a donc G = {0}.



— Soit & présent H = {(Matg(u))Tvl, ueA}.
H est un sous-espace vectoriel de M,, 1(C).
Si H # M, 1(C), alors on note p=dim H <n et H = Vect (W1,...,W)).
On choisit X # 0 dans Uintersection d’hyperplans

Ker (W) nKer (W) n...nKer(WpT)

qui est de dimension >n —p > 0.
Alors, en prenant x € E tel que X = Matg(z) =X, onaxeG et z#0, ce qui est exclu.
D’ou, par 'absurde, H = M,, 1(C).
~ Comme H = M, 1(C), pour tout j € [1,n]], il existe w; € A tel que (Matg(w;)) V1 = V.
On a alors E; ; = ViVjT = VivlTMatB(wj) = E;1Matg(w;) = Matg(u; 1w;), ot u; qw; € A car A est stable par
composition.
~ Posons alors, pour tout (4,5) € [1,2]]?, u;; = u; 1w;.
(wi,5) (i,j)e[[1,n] €St une base de L(E) car (MatB(uixj))(i,j)e[[l,n]]z = (Ei,j) i,j)e[[1,n]? €St la base canonique de M,,(C).
Par suite, L(E) = Vect ((i,j)(i,j)e[1,n]2) € A comme espace vectoriel engendré par des éléments de A.
L’inclusion réciproque étant évidente, on a bien 'égalité : A= L(E).



