
Centrale M1 2019

Calculatrices autorisées

Réduction de sous-algèbres de L(E)
Dans tout le problème, K désigne R ou C et E est un K-espace vectoriel de dimension n ≥ 1.

On note L(E) le K-espace vectoriel des endomorphismes de E etMn(K) le K-espace vectoriel des matrices carrées à n lignes
et n colonnes et à coe�cients dans K.

On note MatB(u) la matrice, dans la base B de E, de l'endomorphisme u de L(E).

La matrice transposée de toute matrice M deMn(R) est notée MT .

On dit qu'un sous-ensemble A de L(E) est une sous-algèbre de L(E) si A est un sous-espace vectoriel de L(E), stable pour
la composition, c'est-à-dire que u◦v appartient à A quels que soient les éléments u et v de A. (Remarquer qu'on ne demande
pas que IdE appartienne à A).

On dit qu'une sous-algèbre A de L(E) est commutative si pour tous u et v dans A, u ◦ v = v ◦ u.

Une sous-algèbre A de L(E) est dite diagonalisable (respectivement trigonalisable) s'il existe une base B de E telle que
MatB(u) soit diagonale (respectivement triangulaire supérieure) pour tout u de A.

On dit qu'une partie A de Mn(K) est une sous-algèbre de Mn(K) si A est un sous-espace vectoriel stable pour le produit
matriciel. Elle est dite commutative si, pour toutes matrices A et B de A, AB = BA. Une sous-algèbre A de Mn(K) est
diagonalisable (respectivement trigonalisable) s'il existe P ∈ GLn(K) telle que pour toute matrice M de A, P−1MP soit
diagonale (respectivement triangulaire supérieure).

Si B est une base de E, l'application MatB : L(E) → Mn(K) est une bijection qui envoie une sous-algèbre (respective-
ment commutative, diagonalisable, trigonalisable) de L(E) sur une sous-algèbre de Mn(K) (respectivement commutative,
diagonalisable, trigonalisable).

Un sous-espace vectoriel F de E est strict si F est di�érent de E.

On désigne par Sn(K) (respectivement An(K)) l'ensemble des matrices symétriques de Mn(K) (respectivement antisymé-
triques). On désigne par Tn(K) (respectivement T+

n (K)) le sous-ensemble de Mn(K) constitué des matrices triangulaires
supérieures (respectivement des matrices triangulaires supérieures à coe�cients diagonaux nuls).

I. Exemples de sous-algèbres

I.A - Exemples de sous-algèbres de Mn(K)

1. Les sous-ensembles Tn(K) et T+
n (K) sont-ils des sous-algèbres deMn(K) ?

2. Les sous-ensembles S2(K) et A2(K) sont-ils des sous-algèbres deM2(K) ?

3. On suppose n ≥ 3. Les sous-ensembles Sn(K) et An(K) sont-ils des sous-algèbres deMn(K) ?

I.B - Exemples de sous-algèbres de L(E)

Soit F un sous-espace vectoriel de E de dimension p et AF l'ensemble des endomorphismes de E qui stabilisent F, c'est-à-dire
AF = {u ∈ L(E)|u(F ) ⊂ F}.

4. Montrer que AF est une sous-algèbre de L(E).

5. Montrer que dimAF = n2 − pn+ p2.
On pourra considérer une base de E dans laquelle la matrice de tout élément de AF est triangulaire par blocs.

6. Déterminer max
1≤p≤n−1

(n2 − pn+ p2).

I.C - Exemples de sous-algèbres de M2(K) diagonalisables et non diagonalisables

Soit Γ(K) le sous-ensemble deM2(K) constitué des matrices de la forme

(
a −b
b a

)
où (a, b) ∈ K2.

7. Montrer que Γ(K) est une sous-algèbre deM2(K).

8. Montrer que Γ(R) n'est pas une sous-algèbre diagonalisable deM2(R).

9. Montrer que

(
0 −1
1 0

)
est diagonalisable sur C. En déduire que Γ(C) est une sous-algèbre diagonalisable deM2(C).
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II. Une sous-algèbre commutative de Mn(R)
Dans cette partie, on suppose n ≥ 2.

Pour tout (a0, . . . , an−1) ∈ Rn, on pose

J(a0, . . . , an−1) =


a0 an−1 · · · a1
a1 a0 . . . a2
...

...
...

an−1 an−2 · · · a0

 .

Ainsi, le coe�cient d'indice(i, j) de J(a0, . . . , an−1) est ai−j si i ≥ j et ai−j+n si i < j.

Soit A l'ensemble des matrices deMn(R) de la forme J(a0, . . . , an−1) où (a0, . . . , an−1) ∈ Rn.

Soit J ∈Mn(R) la matrice canoniquement associée à l'endomorphisme ϕ ∈ L(Rn) dé�ni par ϕ : ej 7→ ej+1 si j ∈ {1, . . . n−1}
et ϕ(en) = e1, où (e1, . . . , en) est la base canonique de Rn.

II.A - Calcul des puissances de J

10. Préciser les matrices J et J2. (on pourra distinguer les cas n = 2 et n ≥ 2).

11. Préciser les matrices Jn et Jk pour 2 ≤ k ≤ n− 1.

12. Quel est le lien entre la matrice J(a0, . . . , an−1) et les Jk, où 0 ≤ k ≤ n− 1 ?

II.B - Une base de A
13. Montrer que (In, J, J

2, . . . , Jn−1) est une base de A.
14. Soit M ∈Mn(R). Montrer que M commute avec J si et seulement si M commute avec tout élément de A.
15. Montrer que A est une sous-algèbre commutative deMn(R).

II.C - Diagonalisation de J

16. Déterminer le polynôme caractéristique de J.

17. Montrer que J est diagonalisable dansMn(C).

18. La matrice J est-elle diagonalisable dansMn(R) ?

19. Déterminer les valeurs propres complexes de J est les espaces propres associés.

II.D - Diagonalisation de A
20. Le sous-ensemble A est-il une sous-algèbre deMn(C) ?

21. Montrer qu'il existe P ∈ GLn(C) telle que, pour toute matrice A ∈ A, la matrice P−1AP est diagonale.

Soit (a0, . . . , an−1) ∈ Rn. On note Q ∈ R[X] le polynôme

n−1∑
k=0

akX
k.

22. Quelles sont les valeurs propres complexes de la matrice J(a0, . . . , an−1) ?

III. Sous-algèbres strictes de Mn(R) de dimension maximale

On se propose de montrer dans cette partie que la dimension maximale d'une sous-algèbre stricte de Mn(R) est égale à
n2 − n+ 1.

Dans toute cette partie, A est une sous-algèbre deMn(R) strictement incluse dansMn(R) et on note d sa dimension. On a
donc d < n2.

III.A - Un produit scalaire sur Mn(R)
La trace de toute matrice M deMn(R) est notée tr(M).

23. Montrer que l'application dé�nie sur Mn(R) ×Mn(R) par (A,B) 7→ 〈A,B〉 = tr(ATB) est un produit scalaire sur
Mn(R).

On désigne A⊥ l'orthogonal de A dansMn(R) et on note r sa dimension.

24. Quelle relation a-t-on entre d et r ?

Jusqu'à la �n de cette partie III, on �xe une base (A1, . . . , Ar) de A⊥.
25. Soit M ∈Mn(R). Montrer que M appartient à A si et seulement si, pour tout i ∈ [[1, r]], 〈Ai,M〉 = 0.

26. Montrer que pour toute matrice N ∈ A et tout i ∈ [[1, r]], on a NTAi ∈ A⊥.
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III.B - Conclusion

Soit AT = {MT |M ∈ A}.
27. Montrer que AT est une sous-algèbre deMn(R) de même dimension que A.

On noteMn,1(R) le R-espace vectoriel des matrices colonnes à n lignes et à coe�cients réels. On rappelle qu'à toute matrice
M deMn(R) est associé canoniquement l'endomorphisme deMn,1(R) dé�ni par X 7→MX.

28. Soit X ∈ Mn,1(R) et soit F = Vect(A1X, . . . , ArX). Montrer que F est stable par les endomorphismes de Mn,1(R)
canoniquement associés aux éléments de AT .

29. Montrer que d ≤ n2 − n+ 1 et conclure.

IV. Réduction d'une algèbre nilpotente de Mn(C)
Soit E un C-espace vectoriel de dimension �nie n ≥ 1. Soit A une sous-algèbre de L(E) constituée d'endomorphismes
nilpotents. On admet dans cette partie le théorème ci-dessous, qui sera démontré dans la partie V.

Théorème de Burnside

Soit E un C-espace vectoriel de dimension n ≥ 2. Soit A une sous-algèbre de L(E). Si les seuls sous-espaces vectoriels de E
stables par tous les éléments de A sont {0} et E, alors A = L(E).

On se propose de démontrer par récurrence forte sur n ∈ N∗ que si tous les éléments de A sont nilpotents, alors A est
trigonalisable.

30. Montrer que le résultat est vrai si n = 1.

On suppose désormais que n ≥ 2 et que le résultat est vrai pour tout entier naturel d ≤ n− 1.

31. Montrer qu'il existe un sous-espace vectoriel V de E distinct de E et {0} stable par tous les éléments de A.
On �xe dans la suite un tel sous-espace vectoriel et on note r sa dimension. Soit aussi s = n− r.
32. Montrer qu'il existe une base B de E telle que pour tout u ∈ A,

MatB(u) =

(
A(u) B(u)

0 D(u)

)
où A(u) ∈Mr(C), B(u) ∈Mr,s(C) et D(u) ∈Ms(u).

33. Montrer que {A(u)|u ∈ A} est une sous-algèbre deMr(C) constituée de matrices nilpotentes et que {D(u)|u ∈ A} est
une sous-algèbre deMs(C) constituée de matrices nilpotentes.

34. Montrer que A est trigonalisable.

35. Montrer qu'il existe une base de E dans laquelle les matrices des éléments de A appartiennent à T+
n (C).

V. Le théorème de Burnside

On se propose de démontrer dans cette partie le théorème de Burnside énoncé dans la partie IV.

On �xe un C-espace vectoriel E de dimension n ≥ 2.

On dira qu'une sous-algèbre A de L(E) est irréductible si les seuls sous-espaces vectoriels stables par tous les éléments de A
sont {0} et E.
Soit A une sous-algèbre irréductible de L(E). Il s'agit donc de montrer que A = L(E).

V.A - Recherche d'un élément de rang 1

36. Soient x et y deux éléments de E, x étant non nul. Montrer qu'il existe u ∈ A tel que u(x) = y.
On pourra considérer dans E le sous-espace vectoriel {u(x)|u ∈ A}.

37. Soit v ∈ A de rang supérieur ou égal à 2. Montrer qu'il existe u ∈ A et λ ∈ C tel que :

0 < rg(v ◦ u ◦ v − λv) < rg(v).

Considérer x et y dans E tels que la famille (v(x), v(y)) soit libre, justi�er l'existence de u ∈ A tel que u ◦ v(x) = y et

considérer l'endomorphisme induit par v ◦ u sur Im(v).

38. En déduire l'existence d'un élément de rang 1 dans A.

V.B - Conclusion

Soit u0 ∈ A de rang 1. On peut donc choisir une base B = (ε1, . . . , εn) de E telle que (ε2, . . . , εn) soit une base de keru0.

39. Montrer qu'il existe u1, . . . , un ∈ A de rang 1 tels que ui(ε1) = εi pour tout i ∈ [[1, n]].

40. Conclure
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Centrale M1 2019 - Corrigé

I. Exemples de sous-algèbres

I.A - Exemples de sous-algèbres de Mn(K)
1. Tn(K) et T +n (K) sont des sous-espaces vectoriels de Mn(K) stables par produit, donc ce sont des sous-algèbres de
Mn(K).

2. S2(K) et A2(K) sont des sous-espaces vectoriels deM2(K).

Cependant, A = (1 0
0 0

) ∈ S2(K) et B = (0 1
1 0

) ∈ S2(K), mais AB = (0 1
0 0

) /∈ S2(K), donc S2(K) n'est pas stable par

produit, donc S2(K) n'est pas une sous-algèbre deM2(K).

C = ( 0 1
−1 0

) ∈ A2(K) et C2 = −I2 /∈ A2(K), donc A2(K) n'est pas stable par produit, donc A2(K) n'est pas une

sous-algèbre deM2(K).

3. En prenant An = ( A 02,n−2
0n−2,2 0n−2

) ∈ Sn(K), Bn = ( B 02,n−2
0n−2,2 0n−2

) ∈ Sn(K) et Cn = ( C 02,n−2
0n−2,2 0n−2

) ∈ An(K), on a

AnBn = ( AB 02,n−2
0n−2,2 0n−2

) /∈ Sn(K) et C2
n = ( −I2 02,n−2

0n−2,2 0n−2
) /∈ An(K), donc An(K) et Sn(K) ne sont pas stables par

produit, donc Sn(K) et An(K) ne sont pas des sous-algèbres deMn(K).

I.B - Exemples de sous-algèbres de L(E)
4. ● AF ⊂ L(E) par dé�nition de AF .

● l'application nulle 0L(E) ∈ AF car 0L(E)(F ) = {0E} ⊂ F, donc AF ≠ ∅.
● Pour tout (u, v) ∈ (AF )2, pour tout λ ∈ K, pour tout x ∈ F,

(λu + v)(x) = λ u(x)
±

∈F car u∈AF

+ v(x)
±

∈F car v∈AF

∈ F car F est un sous-espace vectoriel de E,

donc (λu + v)(F ) ⊂ F, donc λu + v ∈ AF .
● AF est donc un sous-espace vectoriel de E.
● De plus, pour tout (u, v) ∈ (AF )2, u○v(F ) = u(v(F )) ⊂ u(F ) ⊂ F, donc u○v ∈ AF , donc AF est stable par composition.
● AF est donc bien une sous-algèbre de L(E).

5. Soit B1 = (e1, . . . , ep) une base de F complétée en une base B = (e1, . . . ep, ep+1, . . . , en) de E.

Alors u ∈ AF ⇔MatB(u) est de la forme ( A B
0n−p,p C

) où A ∈ Mp(K), B ∈ Mp,n−p(K) et C ∈ Mn−p(K).

Comme u↦MatB(u) est un isomorphisme d'espaces vectoriels, on a

dimAF = dim{( A B
0n−p,p C

) , A ∈ Mp(K), B ∈ Mp,n−p(K) C ∈ Mn−p(K)} = p2 + p(n − p) + (n − p)2 = n2 − pn + p2.

6. Pour tout p ∈ [[1, n−1]], n2−np+p2 = (p − 1

2
n)

2

+ 3

4
n2, donc (n2−pn+p2) est maximum quand (p − 1

2
n)

2

est maximum,

donc pour p = 1 ou p = n − 1, et ce maximum vaut (1 − 1

2
n)

2

+ 3

4
n2 = n2 − n + 1.

I.C - Exemples de sous-algèbres de M2(K) diagonalisables et non diagonalisables

7. ● Γ(K) = Vect

⎛
⎜⎜⎜⎜⎜
⎝

I2,(
0 −1
1 0

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
notée C

⎞
⎟⎟⎟⎟⎟
⎠

, donc Γ(K) est un sous-espace vectoriel deM2(K).

● De plus, comme C2 = −I2, on a, pour tout (aI2 + bC, cI2 + dC) ∈ Γ(K)2,

(aI2 + bC)(cI2 + dC) = (ac − bd)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈K

I2 + (ad + bc)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈K

C ∈ Γ(K),

donc Γ(K) est stable par produit.
● Γ(K) est donc bien une sous-algèbre deM2(K).

8. On a χC(X) = X2 + 1 n'est pas scindé sur R, donc C n'est pas diagonalisable dansM2(R), donc Γ(R) n'est pas une
sous-algèbre diagonalisable deM2(R).
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9. ● Comme χC(X) = X2 + 1 = (X + i)(X − i) est scindé à racines simples sur C, C est diagonalisable dansM2(C) et il
existe P ∈ GL2(C) et D = diag(i,−i) diagonale telles que C = PDP −1.
● Alors, pour tout aI2 + bC ∈ Γ(K),

P −1(aI2 + bC)P = aPI2P −1 + bP −1CP = aI2 + bdiag(i,−i) = diag(a + bi, a − bi),

donc Γ(C) est une sous-algèbre diagonalisable deM2(C).

II. Une sous-algèbre commutative de Mn(R)
II.A - Calcul des puissances de J

10. ● On a J =Mat(e1,...,en)(ϕ) = J(0,1,0,0, . . . ,0).
● J2 =Mat(e1,...,en)(ϕ2).
Or, pour tout i ∈ [[1, n − 2]], ϕ2(ei) = ϕ(ei+1) = ei+2, ϕ2(en−1) = ϕ(en) = e1 et ϕ2(en) = ϕ(e1) = e2, donc

J2 =Mat(e1,...,en)(ϕ2(e1), . . . ϕ2(en)) =
⎧⎪⎪⎨⎪⎪⎩

I2 si n = 2

J(0,0,1,0, . . . ,0) si n ≥ 3
.

11. Soit n ≥ 3.
On véri�e par le calcul que J × J(a0, a1 . . . , an−1) = J(an−1, a0, . . . , an−2), puis, par récurrence immédiate, on obtient :
Jk = J(0, . . . ,0,1,0, . . . ,0) (ak = 1 et ai = 0 pour tout i ≠ k) et Jn = In.

12. On a J(a0, . . . , an−1) =
n−1

∑
k=0

akJ(0, . . . ,0, 1®
position k

,0, . . . ,0) =
n−1

∑
k=0

akJ
k.

II.B - Une base de A
13. ● La famille (In, J, J2, . . . , Jn−1) est composée d'éléments de A d'après la question 11.

● D'après la question 12, (In, J, J2, . . . , Jn−1) est génératrice de A.
● De plus, pour tout (a0, . . . , an−1) ∈ Kn, toujours d'après la question 13, on a :

a0In +
n−1

∑
k=1

akJ
k = 0n⇔ J(a0, . . . an−1) = 0n⇔ a0 = . . . = an−1 = 0,

donc la famille (In, J, J2, . . . , Jn−1) est libre.
● (In, J, J2, . . . , Jn−1) est donc bien une base de A, qui est donc de dimension n.

14. Soit M ∈ Mn(R).
● Si M commute avec J, alors, par récurrence immédiate, M commute avec Jk pour tout k ∈ N.

Par suite, pour tout N =
n−1

∑
k=0

akJ
k ∈ A,

MN =M (
n−1

∑
k=0

akJ
k) =

n−1

∑
k=0

akMJk =
n−1

∑
k=0

akJ
kM = (

n−1

∑
k=0

akJ
k)M = NM,

donc M commute avec tous les éléments de A.
● Réciproquement, si M commute avec tous les éléments de A, M commute avec J car J ∈ A.
● par double-implication, on a donc bien l'équivalence souhaitée.

15. ● A = Vect(In, J, J2, . . . , Jn−1) est un sous-espace vectoriel deMn(K).

● Pour tout i ∈ [[0, n − 1]], pour tout N =
n−1

∑
k=0

akJ
k ∈ A,

J iN = J i (
n−1

∑
k=0

akJ
k) =

n−1

∑
k=0

akJ
k+i =

n−1−i

∑
k=0

akJ
k+i +

n−1

∑
k=n−i

akJ
k+i

=
n−1−i

∑
k=0

akJ
k+i +

n−1

∑
k=n−i

ak J
n

=̄In

Jk+i−n

=
n−1−i

∑
k=0

ak Jk+i
±

∈A car k+i∈[[0,n−1]]

+
n−1

∑
k=n−i

ak Jk+1−n
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

∈A car k+i−n∈[[0,n−1]]

∈ A comme combinaison linéaire d'éléments de A.

A est donc stable par produit, donc A est une sous-algèbre deMn(K).

● Pour tout N =
n−1

∑
k=0

akJ
k ∈ A,

JN = J (
n−1

∑
k=0

akJ
k) =

n−1

∑
k=0

akJJ
k =

n−1

∑
k=0

akJ
k+1 =

n−1

∑
k=0

akJ
kJ = (

n−1

∑
k=0

akJ
k)J = NJ,
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donc N commute avec J, donc, d'après la question précédente, N commute avec tous les éléments de A.
A est donc bien une sous-algèbre commutative deMn(K).

II.C - Diagonalisation de J

16. On a

χJ(X) = det(XIn − J) =

RRRRRRRRRRRRRRRRRRRRRRR

X 0 ⋯ 0 −1
−1 X ⋱ ⋮ 0
0 ⋱ ⋱ 0 ⋮
⋮ ⋱ ⋱ ⋱ 0
0 ⋯ 0 −1 X

RRRRRRRRRRRRRRRRRRRRRRR[n]

=X

RRRRRRRRRRRRRRRRRRRRRRR

X 0 ⋯ ⋯ 0
−1 X 0 ⋮
0 ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
0 ⋯ 0 −1 X

RRRRRRRRRRRRRRRRRRRRRRR[n−1]

+ (−1)n+1 × (−1) ×

RRRRRRRRRRRRRRRRRRRRRRR

−1 X 0 ⋯ 0
0 −1 X ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
⋮ ⋱ ⋱ X
0 ⋯ ⋯ 0 −1

RRRRRRRRRRRRRRRRRRRRRRR[n−1]
(dvlpt par rapport à la dernière colonne)

=X ×Xn−1 + (−1)n+2 × (−1)n−1 (déterminant de matrices triangulaires)

=Xn + (−1)2n+1 =Xn − 1.

17. Par suite, χJ est scindé à racines simples dans C (ses racines sont les racines n-ème de l'unité), donc J est diagonalisable
dansMn(C).

18. Pour n = 2, χJ = (X − 1)(X + 1) est scindé à racines simples dans R, donc J est diagonalisable dansM2(R).
Si n ≥ 3, χJ n'est pas scindé sur R, donc J n'est pas diagonalisable dansMn(R).

19. D'après la question 17, SpC(J) = {e2ikπ/n, k ∈ [[0, n − 1]]} = {ωk, k ∈ [[0, n − 1]]} où ω = e2iπ/n.
Pour tout k ∈ [[0, n − 1]],

J

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ω(n−1)k

ω(n−2)k

⋮
ωk

⋮
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

1

ω(n−1)k

ω(n−2)k

⋮
ωk

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

ωnk

ω(n−1)k

ω(n−2)k

⋮
ωk

⎞
⎟⎟⎟⎟⎟⎟
⎠

= ωk

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ω(n−1)k

ω(n−2)k

⋮
ωk

⋮
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

donc

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ω(n−1)k

ω(n−2)k

⋮
ωk

⋮
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

est un vecteur propre de J associé à la valeur propre ωk.

Par suite, Vect

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ω(n−1)k

ω(n−2)k

⋮
ωk

⋮
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⊂ Eωk(J), et, comme ωk est une valeur propre simple, on a dimEωk(J) = 1 = dim Vect

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ω(n−1)k

ω(n−2)k

⋮
ωk

⋮
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

donc, comme on a une inclusion et l'égalité des dimensions, on a :

Eωk(J) = Vect

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ω(n−1)k

ω(n−2)k

⋮
ωk

⋮
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

II.D - Diagonalisation de A
20. La preuve faite en question 15 avec K au lieu de R permet de conclure directement ici que A est une sous-algèbre

(commutative) deMn(C).
21. Comme J est diagonalisable dansMn(C), il existe P ∈ GLn(C) et D diagonale telles que P −1JP =D.

On peut même particulariser P et D à l'aide de la question 19, mais une telle précision ne servira à rien dans la suite

de cette preuve.
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Alors, par récurrence immédiate, on a, pour tout k ∈ N, P −1JkP =Dk. Puis, pour tout M =
n−1

∑
k=0

akJ
k ∈ A,

P −1MP = P −1 (
n−1

∑
k=0

akJ
k)P =

n−1

∑
k=0

akP
−1JkP =

n−1

∑
k=0

akD
k,

qui est diagonale come combinaison linéaire de matrices diagonales.
A est donc une sous-algèbre diagonalisable deMn(C).

22. En choisissant bien la matrice P dans la question précédente, on a D = diag((ωi)i=0..n−1), donc

P −1J(a0, . . . , an−1)P =
n−1

∑
k=0

akD
k =

n−1

∑
k=0

akdiag((ωki)i=0..n−1)

= diag((
n−1

∑
k=0

akω
ki)

i=0..n−1

) ,

donc SpC(J(a0, . . . , an−1)) = {
n−1

∑
k=0

akω
ki, i ∈ [[0, n − 1]]} .

III. Sous-algèbres strictes de Mn(R) de dimension maximale

III.A - Un produit scalaire sur Mn(R)
23. ● Pour tout (M,N) ∈ (Mn(R))2, ⟨M,N⟩ = tr(MTN) = tr((MTN)T ) = tr(NTM) = ⟨N,M⟩ , donc ⟨, ⟩ est symétrique.

● Pour tout (M,N,P ) ∈ (Mn(R))3, pour tout λ ∈ R,

⟨λM +N,P ⟩ = tr((λM +N)TP ) = tr(λMTP +NTP ) (linéarité de la transposition)

= λtr(MTP ) + tr(NTP ) (linéarité de la trace)

= λ ⟨M,P ⟩ + ⟨N,P ⟩ ,

donc ⟨, ⟩ est linéaire à gauche.
● ⟨, ⟩ est symétrique et linéaire à gauche, donc bilinéaire.
● Pour tout i ∈ [[1, n]],

(MTM)i,i =
n

∑
k=1

(MT )i,k(M)k,i =
n

∑
k=1

m2
k,i,

donc

⟨M,M⟩ = tr(MTM) =
n

∑
i=1

(MTM)i,i =
n

∑
i=1

n

∑
k=1

m2
k,i = ∑

1≤i,k≤n

m2
i,k.

Par suite, il est clair que ⟨M,M⟩ ≥ 0 (comme somme de positifs) et on a

⟨M,M⟩ = 0⇔ ∑
1≤i,k≤n

m2
i,k = 0⇔∀(i, k) ∈ [[1, n]]2,mi,k = 0⇔M = 0n.

⟨, ⟩ est donc bien dé�ni positif.
● ⟨, ⟩ dé�nit donc bien un produit scalaire surMn(R).

24. CommeMn(R) est de dimension �nie, (Mn(R), ⟨., .⟩) est un espace euclidien, donc dimA+ dimA⊥ = dimMn(R), ie
d + r = n2.

25. Comme (Mn(R), ⟨., .⟩) est un espace euclidien, A = (A⊥)⊥.
● Soit M ∈ A. Alors, pour tout N ∈ A⊥, ⟨M,N⟩ = 0.
En particulier, pour tout i ∈ [[1, r]], comme Ai ∈ A⊥, on a ⟨Ai,M⟩ = 0.
● Réciproquement, supposons que pour tout i ∈ [[1, r]], ⟨Ai,M⟩ = 0. Comme (A1, . . . ,Ar) est une base de A⊥, pour tout
N ∈ A⊥, il existe (a1, . . . , ar) ∈ Rr tel que N =

n

∑
i=1

aiAi.

Alors, par bilinéarité du produit scalaire, on a

⟨N,M⟩ =
n

∑
i=1

ai ⟨Ai,M⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

=0

= 0,

donc M ∈ (A⊥)⊥ = A.
● On a donc bien, par double-implication, l'équivalence souhaitée.

26. Soit N ∈ A et i ∈ [[1, r]].
Pour tout M ∈ A,

⟨M,NTAi⟩ = tr(MTNTAi) = tr((NM)TAi) = ⟨NM,Ai⟩ = 0

d'après la question précédente avec NM ∈ A car A est stable par produit.
On a donc bien NTAi ∈ A⊥.
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III.B - Conclusion

27. ● L'application transposition Trans ∶ M ∈ Mn(R) ↦ MT ∈ Mn(R) est un automorphisme de Mn(R) (et Trans−1 =
Trans), donc AT = Trans(A) est un sous-espace vectoriel de Mn(R) de même dimension que A comme image d'un
sous-espace vectoriel par un isomorphisme.
● Pour tout (A,B) ∈ (AT )2, il existe (M,N) ∈ A2 tel que A =MT et B = NT .
Alors AB =MTNT = (NM)T ∈ AT car A est stable par produit, donc NM ∈ A.
AT est donc stable par produit, donc c'est une sous-algèbre deMn(R).

28. Pour tout MT ∈ A⊥, pour tout i ∈ [[1, r]], MTAi ∈ A⊥ d'après la question 26, donc, comme (A1, . . . ,Ar) est une base

de A⊥, il existe (a1, . . . , ar) ∈ Rr tel que MTAi =
r

∑
k=1

akAk et, par suite,

MTAiX =
n

∑
k=1

akAkX ∈ Vect(A1X, . . . ,ArX).

Par suite, MT (F ) = Vect(MTA1X, . . . ,M
TArX) ⊂ F comme espace vectoriel engendré par des éléments de F, donc F

est stable par MT . cqfd.

29. ● Si d > n2 − n + 1, alors r = n2 − d < n − 1. Soit X /∈ KerA1 (possible car A1 ≠ 0 car la famille (A1, . . . ,Ar) est libre).
Soit F = Vect(A1X, . . . ,ArX). On a :
� dimF ≤ r < n, donc F ≠Mn,1(R)
� dimF ≥ 1, car A1X ≠ 0, donc F ≠ {0}.
De plus, en identi�ant les matrices et leur application linéaire canoniquement associée, on a

AT ⊂ AF , où cette notation a été introduite dans la partie I.B.

On a donc

d = dimA = dimAT (d'après la question 27)

≤ dimAF = n2 − pn + p2 (d'après la question 5)

≤ max
1≤p≤n−1

n2 − pn + p2 = n2 − n + 1, ce qui est contraire à l'hypothèse sur d.

D'où, par l'absurde, d ≤ n2 − n + 1.
● Soit E =Mn,1(R) et soit X ∈ Mn,1(R) non nul. En posant F = Vect(X) de dimension 1, AF = {u ∈ L(E) ∶ u(F ) ⊂ F}
est une sous-algèbre de L(E) de dimension n2 − n + 1 d'après la question 5.
Soit B une base de E. Alors, d'après les remarques préliminaires, {MatB(u), u ∈ AF } est une sous-algèbre deMn(R)
de même dimension, donc de dimension n2 − n + 1.
Le majorant n2 − n + 1 de la dimension d'une sous-algèbre stricte de Mn(R) est donc atteint, donc n2 − n + 1 est la
dimension maximale d'une sous-algèbre stricte deMn(R).

IV. Réduction d'une algèbre nilpotente de Mn(C)
30. Si E est de dimension 1, alors L(E) est de dimension 12 = 1, donc A = {0} ou A = L(E).

Comme IdE n'est pas nilpotente, A ≠ L(E), donc A = {0}, et A est bien trigonalisable.
On peut aussi remarquer que la matrice de n'importe quel endomorphisme de E est une matrice de M1(C), donc

automatiquement triangulaire.

31. Comme IdE n'est pas nilpotente, IdE /∈ A, donc A ≠ L(E), La contraposée du théorème de Burnside assure alors
l'existence d'un sous-espace vectoriel V de E distinct de E et {0} stable par tous les éléments de A.

32. Soit B1 = (e1, . . . , er) une base de V complétée en une base (e1, . . . , en) de E.
Alors, pour tout u ∈ A, pour tout j ∈ [[1, r]], u(ej) ∈ F = Vect(e1, . . . , er), donc il existe (ai,j)i∈[[1,r]] tel que u(ej) =
r

∑
i=1

ai,jej .

Alors on a

MatB(u) =MatB(u(e1), . . . , u(er), u(er+1), . . . , u(en)) = (A(u) B(u)
0 D(u)) ,

où A(u) = (ai,j)1≤i,j≤r ∈ Mr(C), B(u) ∈ Mr,s(C) et D(u) ∈ Ms(C).

33. ● Soit M = (A B
0 D

) où A ∈ Mr(C), B ∈ Mr,s(C) et D ∈ Ms(C).

Montrons par récurrence que, pour tout p ∈ N, il existe Bp ∈ Mr,s(C) telle que Mp = (A
p Bp

0 Dp) (HRp)

Initialisation : Pour p = 0, M0 = Ip = (A
0 B0

0 D0) en posant B0 = 0r,s.

Pour p = 1, B1 = B convient.
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Hérédité : Soit p ∈ N et supposons HRp véri�ée.
Alors

Mp+1 =MpM =
HRp

(A
p Bp

0 Dp)(A B
0 D

) = (A
p+1 ApB +BpD
0 Dp+1 ) = (A

p+1 Bp+1
0 Dp+1)

en posant Bp+1 = ApB +BpD. On a bien HRp+1.

Conclusion : D'où, par récurrence, pour tout p ∈ N, il existe Bp ∈ Mr,s(C) telle que Mp = (A
p Bp

0 Dp) .

● Soit A ∈ {A(u)∣u ∈ A}. Alors il existe u ∈ A tel que MatB(u) = (A B
0 D

) .
Alors, d'après le premier point, pour tout p ∈ N,

MatB(up) = (A B
0 D

)
p

= (A
p Bp

0 Dp) .

Or u ∈ A, donc u est nilpotent, donc il existe p0 ∈ N tel que up0 = 0 et, par suite, 0 = (A
p0 Bp0
0 Dp0) , donc Ap0 = 0, donc

A est nilpotente.
● Pour tout (u, v) ∈ A pour tout λ ∈ C,

MatB(λu + v) = λMatB(u) +MatB(v) = (λA(u) +A(v) ∗
0 ∗) ,

donc A(λu + v) = λA(u) +A(v).
ϕ ∶ u ∈ A ↦ A(u) ∈ Mr(C) est donc une application linéaire, donc {A(u)∣u ∈ A} = Imϕ est un sous-espace vectoriel de
Mr(C).

● Pour tout (A,B) ∈ ({A(u)∣u ∈ A})2, il existe u et v ∈ A tels que A = A(u) et B = A(v), c'est-à-direMatB(u) = (A ∗
0 ∗)

et MatB(v) = (B ∗
0 ∗) .

Alors u ○ v ∈ A car A est une sous-algèbre de L(E) et

MatB(u ○ v) =MatB(u) ×MatB(v) = (AB ∗
0 ∗) ,

donc AB = A(u ○ v) ∈ {A(u)∣u ∈ A}.
{A(u)∣u ∈ A} est donc stable par produit.
● {A(u)∣u ∈ A} est donc bien une sous-algèbre deMr(C) constituée de matrices nilpotentes.
● On montre de même que {D(u)∣u ∈ A} est une sous-algèbre deMs(C) constituée de matrices nilpotentes.

34. ● {A(u)∣u ∈ A} est une sous-algèbre de Mr(C) dont tous les éléments sont nilpotents, donc, comme r ≤ n − 1,
{A(u)∣u ∈ A} est trigonalisable (version matricielle de l'hypothèse de récurrence), ie il existe P ∈ GLr(C) telle que pour
tout A ∈ {A(u)∣u ∈ A}, P −1AP soit triangulaire supérieure.
● De même, il existe Q ∈ GLs(C) telle que pour tout D ∈ {D(u)∣u ∈ A}, P −1DP soit triangulaire supérieure.

● Posons alors R = (P 0
0 Q

) ∈Mn(C).

Comme det(R) = det(P )det(Q) ≠ 0, R est inversible.
En voyant R comme une matrice de changement de base, et en posant donc C base de E telle que R =MatB(C), on a,
pour tout u ∈ A,

MatC(u) = R−1MatB(u)R = (P
−1 0
0 Q−1

)(A(u) B(u)
0 D(u))(P 0

0 Q
)

= (P
−1 0
0 Q−1

)(A(u)P B(u)Q
0 D(u)Q)

= (P
−1A(u)P P −1B(u)Q

0 Q−1D(u)Q)

et cette dernière matrice est triangulaire supérieure car P −1A(u)P et Q−1D(u)Q le sont. On peut alors conclure la

propriété annoncée par récurrence...

35. Dans cette base C, les valeurs propres de u sont les éléments diagonaux de la matrice associée.
Or, comme il existe p tel que up = 0, si x est un vecteur propre de u associé à la valeur propre λ, alors

up(x) = up−1(u(x)) = up−1(λx) = λup−1(x) = . . . = λpx,

donc, comme up = 0, on a λpx = 0, donc, comme x ≠ 0, on a λp = 0, donc λ = 0.
Par suite, les éléments diagonaux de la matrice associée à u dans la base C sont nuls, donc cette matrice triangulaire
est dans T +n (C).
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V. Le théorème de Burnside

V.A - Recherche d'un élément de rang 1

Comme A est irréductible, A ≠ {0L(E)}, car tous les sous-espaces vectoriels de E seraient alors stable par tous les éléments
de A.
36. ● Soient x un élément non nul de E.

F = {u(x)∣u ∈ A} est un sous-espace vectoriel car A en est un. De plus, pour tout y ∈ F, il existe u ∈ A tel que y = u(x).
Alors, pour tout v ∈ A, v(y) = v ○ u

±
∈A

(x) ∈ {f(x)∣f ∈ A} = F. F est donc stable par tous les éléments de A, donc F = {0}

ou F = E.
● Si F = {0}, alors, pour tout u ∈ A, u(x) = 0, donc Vect(x) est stable par tous les éléments de A, ce qui est exclu car
A est une sous-algèbre irréductible de L(E) et car Vect(x) ≠ {0} (car x ≠ 0).
● On a donc F = E, et, par suite, pour tout y ∈ E, il existe u ∈ A tel que u(x) = y.

37. ● Soit x et y dans E tels que la famille (v(x), v(y)) soit libre (x et y existent car rg(v) ≥ 2). D'après la question
précédente, comme v(x) ≠ 0, il existe u ∈ A tel que y = u(v(x)) = u ○ v(x).
● Considérons alors ϕ ∶ z ∈ Im(v) ↦ v ○ u(z) ∈ Im(v).
ϕ est un endomorphisme de Im(v), C espace vectoriel de dimension au moins 1, donc ϕ admet au moins une valeur propre
λ. (car son polynôme caractéristique, de degré au moins 1, admet au moins une racine sur C). Par suite, ϕ − λIdIm(v)

n'est pas injective, donc non surjective (endomorphisme en dimension �nie), donc rg(ϕ) ≤ dim(Im(v)) − 1 = rg(v) − 1.
● Soit alors ψ = v ○ u ○ v − λv ∈ L(E).
Comme ψ = ϕ ○ v, rg(ψ) ≤ min(rg(ϕ), rg(v)) ≤ rg(v) − 1 et, comme ψ(x) = v ○u ○ v(x) −λv(x) = v((u ○ v)(x)) −λv(x) =
v(y) − λv(x) ≠ 0 (car (v(x), v(y)) est une famille libre), donc rg(ψ) ≥ 1.
On a donc bien 0 < rg(v ○ u ○ v − λv) < rg(v).

38. Supposons qu'il n'existe pas d'élément de A de rang 1.
Posons alors r = min{rg(u), u ∈ A∖{0L(E)}}, qui existe comme minimum d'un ensemble �ni non vide (car A ≠ {0L(E)}).
Soit alors v ∈ E tel que rg(v) = r. Alors, en prenant u comme dans la question précédente, v ○u ○ v ∈ A comme composé
d'éléments de A, et v ○ u ○ v − λv ∈ A car A est un sous-espace vectoriel de L(E).
Or 0 < rg(v ○ u ○ v − λv) < rg(v) = r, ce qui est exclu.
D'où, par l'absurde, il existe v ∈ A tel que rg(v) = 1.

V.B - Conclusion

39. Comme u0 est de rang 1, et u0(εk) = 0 pour tout k ∈ [[2, n]], on a u0(ε1) ≠ 0.
D'où, d'après la question 36, pour tout i ∈ [[2, n]], il existe vi ∈ A tel que vi(u0(ε1)) = εi. Alors ui = vi ○ u ∈ A car A est
stable par composition et

ui(ε1) = εi et ∀k ∈ [[2, n]], ui(εk) = vi(u0(εk)) = vi(0) = 0,

donc dim Im(ui) = dim Vect(ui(εk)k∈[[1,n]]) = dim Vect(ui(ε1)) = 1, donc ui est de rang 1 et ui(ε1) = εi.
40. On construit maintenant des endomorphismes ui,j dans A dont les matrices dans B sont les Ei,j de la base canonique

deMn(C).
On a déjà construit ui,1 = ui dans la question précédente.
� Notons (V1, . . . , Vn) la base canonique deMn,1(C) et

G = {x ∈ E ∶ ∀u ∈ A, V T1 MatB(u)MatB(x) = 0} .

� G est un sous-espace vectoriel de E.
De plus, si x ∈ G, alors, pour tout v ∈ A, v(x) ∈ G car pour tout u ∈ A,

V T1 MatB(u)MatB(v(x)) = V T1 MatB(u)MatB(v)MatB(x) = V T1 MatB (u ○ v)
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

∈A

MatB(x) =
car x ∈ G

0.

Par suite, comme A est supposée irréductible, on a G = {0} ou G = E.
Supposons G = E. Soit alors ϕ ∶ x ∈ E ↦ V T1 MatB(x) ∈ C. ϕ est une forme linéaire non nulle de L(E,C), donc
K = Kerϕ = {x ∈ E ∶ V T1 MatB(x) = 0} est un sous-espace vectoriel de E de dimension n − 1.
De plus, pour tout x ∈K, pour tout u ∈ A, u(x) ∈K car

V T1 MatB(u(x)) = V T1 MatB(u)MatB(x) = 0

car x ∈ E = G.
K est donc un sous-espace vectoriel non tirvial de E stable par A, ce qui est contraire au caractère irréductible de
A.
On a donc G = {0}.
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� Soit à présent H = {(MatB(u))TV1, u ∈ A} .
H est un sous-espace vectoriel deMn,1(C).
Si H ≠Mn,1(C), alors on note p = dimH < n et H = Vect(W1, . . . ,Wp).
On choisit X ≠ 0 dans l'intersection d'hyperplans

Ker(WT
1 ) ∩Ker(WT

2 ) ∩ . . . ∩Ker(WT
p )

qui est de dimension ≥ n − p > 0.
Alors, en prenant x ∈ E tel que X =MatB(x) =X, on a x ∈ G et x ≠ 0, ce qui est exclu.
D'où, par l'absurde, H =Mn,1(C).

� Comme H =Mn,1(C), pour tout j ∈ [[1, n]], il existe wj ∈ A tel que (MatB(wj))TV1 = Vj .
On a alors Ei,j = ViV

T
j = ViV

T
1 MatB(wj) = Ei,1MatB(wj) = MatB(ui,1wj), où ui,1wj ∈ A car A est stable par

composition.
� Posons alors, pour tout (i, j) ∈ [[1, n]]2, ui,j = ui,1wj .

(ui,j)(i,j)∈[[1,n]]2 est une base de L(E) car (MatB(ui,j))(i,j)∈[[1,n]]2 = (Ei,j)(i,j)∈[[1,n]]2 est la base canonique deMn(C).
Par suite, L(E) = Vect((ui,j)(i,j)∈[[1,n]]2) ⊂ A comme espace vectoriel engendré par des éléments de A.
L'inclusion réciproque étant évidente, on a bien l'égalité : A = L(E).
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